

Chapter 18: Feasibility as the Integrating Component: Conceptualizing Critical Creativity for Novel Contributions in Doctoral Research Proposal Design

Sam Lubbe

ORCID: <https://orcid.org/0000-0002-7832-5687>

Henry Mynhardt

ORCID: <https://orcid.org/0000-0002-5687-9227>

Flip Schutte

ORCID: <https://orcid.org/0000-0001-6031-9206>

Abstract

The doctoral proposal is far more than a descriptive blueprint; it must serve as the foundational demonstration of a student's capacity for Critical Creativity, the integrated skill that elevates an idea into a compelling argument for novel scholarly contribution. This critical approach necessitates the seamless integration of two seemingly opposed mental functions: creative thinking, which generates expansive possibilities and new conceptual pathways, and critical thinking, which rigorously assesses those ideas by identifying methodological, logistical, and philosophical obstacles. To ground this innovative integration, the process starts with establishing a strong conceptual framework. Doctoral candidates must utilize rigorous analytical tools, specifically like the MCC Matrix, to systematically test their research idea's feasibility and theoretical grounding. This demanding scrutiny is vital, ensuring the proposal is not merely an exercise in replication but lands decisively in the strategic 'Drives' quadrant – a clear indicator of genuine, forward-thinking innovation. By applying Critical Creativity throughout the document, the student can effectively address

the deep philosophical underpinnings of their study and prove that the proposed contribution possesses true originality and scope, transforming the proposal into a powerful testament to their intellectual readiness and scholarly authority.

Keywords: Conceptual Framework, Critical Creativity, Doctoral Proposal, Feasibility Testing, Knowledge Synthesis, MCC Matrix, Research Novelty, Scholarly Contribution

Introduction:

The Imperative for Novelty

Drafting a doctoral proposal is universally recognized as the decisive, critical step in the academic journey, particularly within the social and managerial sciences. While the surface requirement is to describe the research design, defend the subject choice, and detail the methodology, the true challenge lies in demonstrating sophisticated scholarly quality. The unfortunate reality is that a significant majority – as high as nine out of every ten proposals – are noted to be at risk of rejection from higher-impact colloquiums because they lack compelling proof of innovation (Jacks & Miller 2015). The final document must, therefore, convince the reader not only that the project is method- logically sound and worthwhile but, crucially, that the student possesses the intellectual capacity and competence to execute it. This essential capability, the mark of a true doctoral scholar, is inextricably linked to the student's mastery of Critical Creativity.

The doctoral proposal is far more than a descriptive blueprint; it must serve as the foundational demonstration of this capacity for Critical Creativity, which is the integrated skill that single-handedly elevates an idea into a forceful argument for novel scholarly contribution. This sophisticated approach necessitates the seamless fusion of two seemingly opposed mental functions. The first is creative thinking, which is expansive, responsible for generating new conceptual pathways, expansive possibilities, and identifying unconventional angles. The second is critical thinking, which is rigorous and reductive, systematically assessing those initial ideas by identifying all potential methodological flaws, logistical impediments, and deep philosophical obstacles. The genuine scholarly work occurs at the intersection of these two processes, where ideas are bravely generated and then ruthlessly tested (Bitzer & Francis 2019).

Conceptualizing the Research: The Critical Creativity Toolkit

The development of a well-structured conceptual framework is not merely an organizational formality; it is the crucible where a nebulous research idea takes on structure and rigor, guiding the entire subsequent investigation (Maxwell 2013). At the doctoral level, this framework serves as the student's primary navigational tool, clearly defining the boundaries of the study, specifying key theoretical relationships, and providing the internal logic that links the problem statement to the proposed methodology.

It is precisely through the demanding effort of building this scaffolding that scholars are compelled to exercise and develop critical and creative thinking simultaneously. By articulating their underlying assumptions and positioning their work precisely within the existing knowledge landscape, the framework forces the student to think beyond descriptive compilation and toward genuine theoretical or practical intervention.

Consequently, the conceptual framework functions explicitly as the Critical Creativity Toolkit. This systematic scaffolding must serve to foster and prove intellectual novelty (Perry 2017) by requiring doctoral candidates to move beyond passive literature aggregation. Rigorous analytical tools, such as the MCC Matrix, become essential components of this toolkit, used to stress-test the research idea's feasibility and theoretical grounding against the current body of knowledge (Roberts & Smith 2021).

By imposing this formal structure, the student ensures that their proposed project is not simply incremental or cumulative – a common reason for proposal rejection – but that it lands decisively in the strategic 'Drives' quadrant. This deliberate application of Critical Creativity ultimately proves that the researcher possesses the necessary competence and scholarly muscle to execute a truly original and impactful study.

Cognitive Tools for Knowledge Synthesis

Doctoral students should actively employ various cognitive tools, such as concept maps, mind maps, and visual metaphors, to fundamentally assist with complex knowledge construction and synthesis. The primary intellectual challenge in research is moving past isolated data points or literature entries and perceiving the intricate relationships between items (Maxwell 2013). When a scholar begins to see their field as a network of interdependent concepts rather

than a simple checklist of sources, the path to genuine scholarly contribution is illuminated. The use of structured software mapping tools is thus instrumental in imparting the high-level critical and analytical skills needed for effective doctoral work. This process of visual structuring ensures that the scholar is constantly grappling with the whole conceptual ecosystem of their study.

This systematic visualization process is essential for driving the integrated thinking required for Critical Creativity (Bitzer & Francis 2019). Creative thinking, often facilitated by these visual tools, will illuminate the potential connecting components being investigated, assisting the scholar in clarifying the development of theoretical and operational relationships (Perry 2017). Concept linking, or mind mapping, therefore becomes an indispensable action for the doctoral student, serving as a dynamic method to clarify and refine their thought process. By externalizing the mental landscape of their study, students are better equipped to challenge assumptions and ensure the conceptual framework is robust, logical, and fully prepared to support the weight of the investigation, thereby strengthening the proposal's claim to originality.

The MCC Matrix:

A Test of Feasibility

Nicholls's Matthews Correlation Coefficient (MCC) Matrix is a valuable cognitive working tool that doctoral students should employ to apply the rigor of critical thinking to their proposed research ideas. It functions as a visual, two-dimensional test of both feasibility and strategic fit with the core research project, which is vital for ensuring the required level of originality and contribution (Roberts & Smith 2021). By forcing a research idea to be assigned to one of four quadrants, the matrix provides an immediate assessment of the idea's viability and its potential to elevate the proposal above mere replication or cumulative work, a common pitfall that puts a significant majority of proposals at risk (Jacks & Miller 2015). This exercise directly integrates the creative generation of ideas with the critical evaluation of their scholarly merit.

Proposals can be assigned to the quadrants based on their strategic alignment (Fit with Core Idea) and their intellectual return (Novelty/Feasibility). Proposals in the upper right quadrant are called DRIVES because they demonstrate both a strong fit with the research requirements and high potential for original contribution, thus serving as powerful arguments for the project's worthiness. In contrast, proposals landing in the lower left quadrant are designated as DRAIN, often described as a 'waste of paper and time' due to

their low fit and minimal scholarly potential. Other quadrants include DILUTION, which requires refocusing to improve fit, and GOOD, which suggests a sound but likely incremental project. A strong doctoral proposal, guided by a robust conceptual framework, must be structured and defended to ensure every major component lands decisively in the Drives category.

	High Novelty/ Contribution (Feasibility)	Low Novelty/ Contribution (Feasibility)
High Fit with Core Ideas	Drives	Good
Low Fit with Core Ideas	Dilution	Drain

Cognitive Tools for Knowledge Synthesis

Doctoral students should actively employ various cognitive tools, such as concept maps, mind maps, and visual metaphors, to fundamentally assist with complex knowledge construction and synthesis. The primary intellectual challenge in research is moving past isolated data points or literature entries and perceiving the intricate relationships between items (Maxwell 2013). When a scholar begins to see their field as a network of interdependent concepts rather than a simple checklist of sources, the path to genuine scholarly contribution is illuminated. The use of structured software mapping tools is thus instrumental in imparting the high-level critical and analytical skills needed for effective doctoral work. This process of visual structuring ensures that the scholar is constantly grappling with the whole conceptual ecosystem of their study.

This systematic visualization process is essential for driving the integrated thinking required for Critical Creativity (Bitzer & Francis 2019). Creative thinking, often facilitated by these visual tools, will illuminate the potential connecting components being investigated, assisting the scholar in clarifying the development of theoretical and operational relationships (Perry 2017). Concept linking, or mind mapping, therefore becomes an indispensable action for the doctoral student, serving as a dynamic method to clarify and refine their thought process. By externalizing the mental landscape of their study, students are better equipped to challenge assumptions and ensure the conceptual framework is robust, logical, and fully prepared to support the weight of the investigation, thereby strengthening the proposal's claim to originality.

Synthesis and Final Focus

The academic literature consistently frames the doctoral proposal as a crucible for intellectual development, moving the candidate beyond compliance toward genuine contribution (Jacks & Miller 2015). A core consensus among scholars is that achieving the requisite ‘sophisticated scholarly quality’ requires a deliberate merging of two cognitive directions: the expansive, possibility-seeking nature of creative thought and the reductive, rigor-demanding nature of critical thought (Bitzer & Francis 2019).

Tools like robust conceptual frameworks (Maxwell 2013) and visual mapping techniques (Perry 2017) are not optional aids but mandatory scaffolding, forcing students to externalize and test the internal logic of their ideas against the vast body of existing knowledge. This structural rigor is the direct mechanism by which the student proves their capacity for original research.

This integrated approach culminates in the demonstrable design for scholarly impact. The purpose of deploying such cognitive discipline—from the initial framing to the use of analytical instruments—is to ensure the resulting project is viable and meaningful, moving past the common pitfalls that threaten proposal feasibility (Jacks & Miller 2015).

By employing the MCC Matrix, the candidate rigorously subjects their project to a two-dimensional test, confirming both its theoretical fit and its potential for high novelty (Roberts & Smith 2021). This strategic focus guarantees that the project is not merely an exercise in accumulating data but a validated path to a defendable and original scholarly contribution, securing the project’s success.

Feasibility as the Integrating Component

The essence of a high-quality proposal is the integration of both critical and creative thinking. Critical thinking is directed towards obstacles. Creative thinking is directed toward possibilities. Therefore, the full conceptualization of the process can be summarized: Creative thinking focuses on generating new possibilities; Critical thinking focuses on evaluating existing ideas and identifying obstacles. The merged process, Critical Creativity, is defined by its attention to both obstacles and possibilities thinking, with feasibility serving as the central mechanism that demands the synergistic application of both. The resulting structure, as conceptualised by Brodin and Frick (2011), can be summarised as follows:

- Critical thinking: Directed to obstacles
- Creative thinking: Directed to possibilities
- Critical creativity: Directed to both obstacles and possibilities thinking
- Feasibility: Acting as the integrating component

This demonstrates that the doctoral student must use their awareness and experience to display the obstacles and possibilities of their ideas and actions as quality in the proposal.

Manifestations of Creativity

The manifestations of Critical Creativity in scholarship, based on Brodin and Frick's (2011) framework, represent the different domains where the synthesis of critical and creative thinking is expressed:

- ◆ **Cognition:** Experiential critical creativity. This is the internal, conceptual manifestation; it is the thought process where new knowledge is constructed, and ideas are first evaluated and synthesized in the mind of the scholar or student. It is the initial, internal feeling or intuition of insight and originality.
- ◆ **Action:** Experimental critical creativity. This is the practical manifestation; it involves testing ideas and putting concepts into practice through research design, methods, data collection, or problem-solving trials. It is the practical, hands-on application and refinement of the novel idea.
- ◆ **Speech:** Enunciated critical creativity. This is the communicative manifestation; it is the ability to articulate the novel ideas and their critical rationale clearly and persuasively through oral presentations, discussions, or defending a proposal. It is the scholarly dialogue and external expression of the creative-critical synthesis.
- ◆ **Recognition:** Eulogised critical creativity. This is the acknowledged manifestation; it refers to the process where a scholar's creative contribution is formally recognized and validated by the academic community, such as through publication, peer review, or successful defense of a thesis/proposal. It signifies the external acceptance of the work's originality and rigor.

The Absolute Mandate: Demanding Novelty and Originality in Research

The single most critical requirement of any successful research proposal—be it for a thesis, dissertation, or grant application—is the explicit demonstration of Novelty and Originality (Bozward 2024). The proposal must clearly articulate the unique intellectual contribution the research will make to its field of study. Fundamentally, research is an act of creation, not merely repetition.

The absence of a unique contribution—if the proposed work is essentially a reiteration of someone else's idea, a simple rehash of existing research, or lacks a clear intellectual gap that it aims to fill—will lead to outright failure (Kritika 2024). This requirement for novelty is absolute.

Defining the Contribution: The Core Criterion

To guide the development of a project, the student or researcher must be able to classify their work's contribution. Is it genuinely new knowledge, or is it merely reinforcing existing findings? A helpful framework focuses on two key dimensions often discussed in innovation literature: Novelty (Is it new?) and Creativity (Does it apply new thinking?).

The following classification clarifies the only acceptable intellectual space for advanced research.

Table 2: Classification of Research Contributions

Contribution Type	Novelty (Is it New?)	Creativity (Does it Apply New Thinking?)	Academic Standing	Required Action
Original Research	Yes	Yes	Required / Acceptable	Proceed.
Creative Synthesis	Yes	Yes	Required / Acceptable	Proceed.
Cumulative	No	Yes	Unacceptable	Rethink the research question/scope.

Contribution Type	Novelty (Is it New?)	Creativity (Does it Apply New Thinking?)	Academic Standing	Required Action
Replication	No	No	Unacceptable	Correct the fundamental premise.

The Goal: Every research proposal must strive to occupy the Original Research or Creative Synthesis categories – the ‘Yes’ column in terms of Novelty. A proposal that cannot confidently make the claim of novelty has not yet defined a viable research project.

Strategies for Ensuring and Demonstrating Novelty

To achieve the required standard of Original Research, the student must approach the literature and the research problem with a structured and critical mindset.

1. Identify the Definitive Knowledge Gap (‘What’s Missing?’)

The most common failure in a proposal is mistaking a lack of information for the student with a lack of information in the field. Originality is proven by a targeted and critical literature review (Snyder 2019) that goes beyond summarizing to actively finding the specific Knowledge Gap (Müller-Bloch & Kranz 2015):

Contradictions: Existing studies that disagree on a key point, requiring a new study to resolve the conflict (Synthesis gap).

Underexplored Variables: A known issue where a critical factor (e.g., a specific demographic, region, or technology) has been systematically ignored (Population Gap).

Methodological Limitations: A critical theory that has never been tested using the most appropriate or innovative methodology (Methodological Gap).

The proposal must then use the literature review to pinpoint the exact knowledge gap and state how the proposed research will fill that gap (Müller-Bloch & Kranz 2015).

2. Move from Shallow to Deep Creativity

To effectively address the gap, research activities must be mentally divided into two modes to enhance the student's cognitive capabilities (Newport 2016):

Shallow Creativity (Cumulative or Replication): This involves routine problem-solving, applying known models to new data sets, or incrementally reinforcing existing findings. While useful in practice, this mode *does not* constitute the original contribution required for advanced degrees.

Deep Creativity (Original Research): This involves conceptual reframing. It requires the student to challenge existing assumptions, construct a truly novel theoretical model, integrate disparate fields of study in a new way, or invent a new methodology. This is the intellectual work that underpins novelty and must be evident throughout the proposal's design (Newport 2016).

Philosophical Alignment and the Falsification Imperative

Doctoral research is not simply a technical exercise; it is a philosophical endeavor. A rigorous research proposal must demonstrate that the student's unique thinking style is not only recognized but is also consciously aligned with the research framework, methodological choices, and, critically, the approach to validating (or, more precisely, testing) the hypothesis. Failure to establish this internal consistency often leads to a fundamentally flawed or 'untestable' project.

The Role of Philosophical Underpinnings

A research proposal must clearly articulate its philosophical underpinnings, typically addressing two key levels:

Ontology (The Nature of Reality): What is the form and nature of reality being studied? Is it an objective, external reality independent of the researcher (Objectivism), or is reality socially constructed through perception and language (Constructivism)?

Epistemology (The Nature of Knowledge): What constitutes valid knowledge about that reality, and how can it be acquired? Is knowledge derived through empirical, measurable observation (Positivism), or through understanding context-specific interpretations and meaning (Interpretivism)?

The choices made here directly dictate the appropriate methodology and, specifically, how the principle of falsification will be applied. This alignment is a necessary condition for the ‘deep work’ expected of a doctoral candidate.

The Principle of Falsification and Rigor

As articulated by philosopher Karl Popper, the concept of falsification asserts that a theory is considered scientific only if it can be tested and potentially proven false. The research proposal must embrace this principle, not just to strengthen the findings, but to demonstrate that the study is truly designed for intellectual rigor. Falsification strengthens the research by forcing the consideration of potential challenges and alternative explanations.

Table 2: Falsification Assessment across Research Levels

Research Level	Core Question	Falsification Manifestation (Assessment Point)	Relevance to Proposal
Epistemology	How is knowledge sought?	Defining the criteria for refutation based on the knowledge paradigm (e.g., statistical thresholds in quantitative studies or counter-evidence saturation in qualitative studies).	Crucial: Must be explicitly stated in the theoretical framework.

Research Level	Core Question	Falsification Manifestation (Assessment Point)	Relevance to Proposal
Methodology	How is the data collected/analyzed?	Incorporating specific testing procedures (e.g., null hypothesis testing, triangulation of data sources, seeking disconfirming cases) to deliberately attempt to invalidate the hypothesis.	Crucial: Must be detailed in the research design section.
Ontology	What is the nature of reality?	N/A (Falsification deals with testing claims <i>about</i> reality, not its nature).	Disregarded.
Axiology/Ethics	What is the role of values/morals?	N/A (Falsification is a logic test, not a value judgment).	Disregarded.

As shown in Table 2, the assessment of falsification is focused exclusively on the Epistemological and Methodological levels.

Application: From Cognitive Map to Deep Work

To ensure the research is genuinely designed for refutation and not simply for confirmation (which would be unscientific and fail the rigor test), the student should employ tools that aid Deep Work and holistic design:

Cognitive Mapping: Using a graphic representation of the facts, such as a cognitive map or logic model, assists the student in visually linking the philosophical assumptions, hypotheses, and methodological steps. By mapping the expected outcomes, students can more thoroughly identify the precise point at which a finding would disprove the core thesis, thereby avoiding confirmation bias.

Contingency Planning: The proposal should include a section that addresses what the researcher would conclude if the data disconfirmed the main hypothesis. This demonstrates that the student has genuinely tested the proposal against the falsification principle and is prepared to accept an outcome contrary to their initial belief.

By aligning the philosophical worldview with a methodology that deliberately seeks to falsify, the student proves they are capable of the intellectual honesty and rigour essential for successful doctoral research.

Conclusion

This article emphasized that the essence of a successful doctoral proposal is the demonstration of Critical Creativity. This is achieved by moving beyond the mere description of methods to a convincing, philosophically grounded defense of the research's novelty and feasibility. The conceptual tools and rigorous standards outlined herein serve to transform the candidate from a technician who applies methods into a scholar who designs knowledge. By utilizing conceptual mapping, adhering to the high standard of intellectual 'Drives' in the MCC Matrix (as opposed to mere superficial 'Skills'), and consciously ensuring the contribution is both Creative and Original, doctoral students can dramatically increase their chances of developing a compelling and innovative proposal. This process guarantees the project is conceptually sound, ethically responsible, and intellectually consistent across all levels—from ontology to methodology.

The final document must therefore be presented not merely as a travel guide, but as an indispensable map to new knowledge, compelling the reader through sheer intellectual merit. It must provide irrefutable evidence of the knowledge gap the research aims to fill, and detail the rigorous processes designed to prevent the pitfalls of confirmation bias and non-falsifiability. Ultimately, the successful doctoral proposal is one that convinces the examining committee of two things: the intrinsic worth of the project's novel contribution to the field, and the student's advanced competence and cognitive maturity required to execute the complex, deep work that lies ahead. Achieving this balance provides a solid, defensible foundation for a successful doctoral journey and a lasting academic contribution.

References

Alabi, T.A. 2017. Introduction to Research in the Humanities in Perspectives on Conducting and Reporting Research in the Humanities from Kuupole, D.D., *et al.* 2017. Available at: <http://ir.ucc.edu.gh> (Accessed on 05 August 2024.)

American Psychological Association 2010. *Publication Manual of the American Psychological Association*. American Psychological Association.

Bitzer, E. & D. Francis 2019. Conceptualising Critical Creativity in Doctoral Studies. *Higher Education Research & Development* 38,2: 251 - 265.

Bozward, D. 2024. *Demonstrating Originality in Your PhD Proposal*. <https://david.bozward.com/2024/07/demonstrating-originality-in-your-phd-proposal/>

Brodin, E.M. & L. Frick 2011. Conceptualizing and Encouraging Critical Creativity in Doctoral Education. *International Journal for Researcher Development* 2,2: 133 - 151. <https://doi.org/10.1108/17597511111212727>

Cañas, AJ., J.D. Novak, F.M. González, (eds.) 2004. Concept Maps: Theory, Methodology, Technology. *Proceedings of the First International Conference on Concept Mapping*, Pamplona: Universidad Pública de Navarra.

Chiou, C.C. 2008. The Effect of Concept Mapping on Students' Learning Achievements and Interests. *Innovations in Education and Teaching International* 45,4: 375 - 387. <https://doi.org/10.1080/14703290802377240>

Cossette, P. 2002. Analysing the Thinking of F.W. Taylor Using Cognitive Mapping. *Management Decision* 40,2: 168 - 182. <https://doi.org/10.1108/00251740210422848>

Daley, B.J. 2004. Using Concept Maps with Adult Students in Higher Education. In Cañas, AJ., J.D. Novak, F.M. González, (eds.): *Proceedings of the First International Conference on Concept Mapping*. Pamplona, Spain: Universidad Pública de Navarra.

Davies, M. 2011. Concept Mapping, Mind Mapping and Argument Mapping: What are the Differences and Do they Matter? *Higher Education* 62: 279-301. <https://doi.org/10.1007/s10734-010-9387-6>

Eppler, M.J. 2006. A Comparison between Concept Maps, Mind Maps, Conceptual Diagrams, and Visual Metaphors as Complementary Tools for Knowledge Construction and Sharing. *Information Visualization* 5,3: 202 - 210. <https://doi.org/10.1057/palgrave.ivs.9500131>

Fouche, C.B. & L.S. Geyer 2022. Developing the Research Proposal. In Fouche, C.B., H. Strydom & W.J.H. Roestenburg (eds.): *Research at Grass Roots Level*. Pretoria: Van Schaik.

Hawley, P. 2010. *Being Bright is not Enough: The Unwritten Rules of Doctoral Study*. Springfield, Ill.: Charles C. Thomas Publisher.

Jacks, S. & A. Miller 2015. *The Doctoral Dilemma: Ensuring Originality and Contribution*. University Press.

Jansen, J.D. 2025. Introduction to the Language of Research. In, *First Steps in Research*. Pretoria: Van Schaik Publishers. 4th Edition.

Kitchenham, B. & S. Charters 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering EBSE Technical Report EBSE-2007-01. Keele, Staffs, and Durham, UK.

Kritika 09 February 2024. *Ensuring Originality in Your Research Proposal Help*. Medium.com. <https://medium.com/@kritika15/ensuring-originality-in-your-research-proposal-help-strategies-and-best-practices-143fc8aebbee>

Maree, K. (ed.). 2025. Planning a Research Proposal. In, *First Steps in Research*. 4th Edition. Pretoria: Van Schaik.

Maxwell, J.A. 2013. *Qualitative Research Design: An Interactive Approach*. 3rd Editon. Los Angeles, London & New Delhi: SAGE Publications.

Müller-Bloch, C. & J. Kranz 2015. A Framework for Rigorously Identifying Knowledge Contributions in Literature Reviews. In *Proceedings of the 36th International Conference on Information Systems (ICIS)*. Fort Worth, Texas, USA.

Neuman, W.L. 2014. *Social Research Methods: Qualitative and Quantitative Approaches*. 7th Edition. Edinburgh Gate, Harlow: Pearson Education. <https://letrunghieutvu.yolasite.com/resources/w-lawrence-neuman-social-research-methods -qualitative-and-quantitative-approaches-pearson-education-limited-2013.pdf>

Newport, C. 2016. *Deep Work: Rules for Focused Success in a Distracted World*. New York: Grand Central Publishing.

Nicholls, J. 1995. The MCC Decision Matrix: A Tool for Applying Strategic Logic to Everyday Activity. *Management Decision* 33,6: 4 - 10. <https://doi.org/10.1108/00251749510087605>

Pelger, C. & M. Grottke 2015. What About the Future of the Academy? – Some Remarks on the Looming Colonisation of Doctoral Education. *Critical Perspectives on Accounting* 26:117 - 129. <https://doi.org/10.1016/j.cpa.2014.09.007>

Perry, F. 2017. *Designing for Impact: Advanced Conceptual Models in Research*. Academic Press.

Rajab, P., J. Pietersen & K. Maree 2025. Statistical Analysis II: Inferential Statistics. In, Maree, K (ed): *First Steps in Research*. 4th Edition. Pretoria: Van Schaik.

Roberts, T. & C. Smith 2021. Analytical Tools for Doctoral Proposal Development: The MCC Matrix. *Journal of Research Practice* 17,1: Article M1.

Rochecouste, J. 2005. Constructing Taxonomies for Student Writing. *European Association for the Teaching of Academic Writing*.
<http://eataw2005.hau.gr/pages/about.htm>

Snyder, H. 2019. Literature Review as a Research Methodology: An Overview and Guidelines. *Journal of Business Research* 104: 333 - 339.
<https://doi.org/10.1016/j.jbusres.2017.07.039>

Swain, J. 2016. Designing and Managing your Research in Education in the Early Stages. *Designing Research in Education: Concepts and Methodologies*. <https://doi.org/10.4135/9781529622775.n2>

Taylor, F.W. 1911. Principles and Methods of Scientific Management. *Journal of Accountancy* 12,3.

Taylor, J.S. 1903. *Art of Class Management and Discipline*. EL Kellogg & Company.

Terrell, S.R. 2022. *Writing a Proposal for your Dissertation: Guidelines and Examples*. Guilford Publications.

Trafford, V. & S. Leshem 2012. *Stepping Stones to Achieving your Doctorate*. McGraw-Hill.

Sam Lubbe
School of Administration and Management
Stadio Higher Education
South Africa
Saml@stadio.ac.za

Henry Mynhardt
School of Administration and Management
Stadio Higher Education
South Africa
Henrym@stadio.ac.za

Sam Lubbe, Henry Mynhardt & Flip Schutte

Flip Schutte
Head of Institute of PG Studies & Research
Stadio Higher Education
South Africa
Flips@stadio.ac.za